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Abstract

Muus et al. investigated the correlation between ACE2, TMPRSS2, and CTSL expression and smoking in
COVID-19 patients. As an extension to this study, this paper investigated the predictability of smoking
habits using scRNA-Seq gene expressions of COVID-19 patients. Topic modelling, logistic regression,
and random forests revealed that CTSB, CTSC, CTSL may be good predictors of smoking behaviours.
It is recommended that the authors of the original study investigate other potential genes’ expressions
with smoking in COVID-19 patients and not limit their analysis to ACE2, TMPRSS2, and CTSL.
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1 Introduction

With the COVID-19 pandemic causing millions of deaths, much research has been conducted to identify
potential risk factors associated with severe COVID-19 symptoms in hopes to reduce mortality. One such
factor, smoking, has been found to increase the expression of angiotensin-converting enzyme 2 (ACE2) in the
lungs. ACE2 is a receptor for SARS-CoV-2, the virus responsible for COVID-19 and hence it is suspected
there is an influence of smoking on COVID-19. Unfortunately, this connection remains unclear. There have
been conflicting findings regarding the relationship between ACE2 levels and COVID-19 infection risk (Leung
et al., 2020), (Gheware et al., 2022). In this paper, using the data set provided by Muus et al, the analysis of
a previously conducted experiment will be extended (Muus et al., 2020). Namely, with the gene expression
provided, the fit of different models on the data will be investigated in hopes of examining the impact of
smoking on COVID-19 patients. The findings could contribute to a better understanding of the complex
relationship between smoking, COVID-19, and other risk factors, ultimately aiding in the development of
effective prevention and treatment strategies.

Muus et al. (2020) conducted an integrated analysis of 107 single-cell and single-nucleus RNA sequenc-
ing studies on various tissues. This included 22 studies on tissue relating to the respiratory system. The
researchers conducted differential analysis on ACE2 viral receptor, type II transmembrane serine proteases
(TMPRSS2), and cathepsin L (CTSL); these are genes that have previously been found to be important
for the uptake of SARS-CoV-2 into the cell. By calculating the correlation with various risk factors such
as age, sex, and smoking status, they investigated how these risk factors affected the aforementioned gene
expressions (Muus et al., 2020). This further allowed the researchers to identify gene expression programs
of cells that are suspectable to SARS-CoV-2 infection. The gene program was compared across different
cell types, organs, and species. In an experiment that investigated smoking, Muus et al. (2020) reported an
upregulation of ACE2, TMPRSS2, and CTSL associated with smokers. However, Muus et al. (2020) did not
investigate how gene expression could be a potential predictor for smoking status. Hence, the current study
aims to expand on the findings by investigating the levels of gene expressions as a predictor for smokers and
non-smokers in COVID-19 patients.

Given that smoking is a known risk factor for respiratory infections such as COVID-19 (He, Sun, Ding,
& Wang, 2021), understanding how smoking affects the expression levels of these genes is critical in under-
standing the mechanisms by which smoking increases the risk of severe COVID-19. For instance, there are
reasons as to why Muus et al. (2020) investigated ACE2, TMPRSS2, and CTSL. In a pathological sense,
ACE2 is a receptor used by SARS-CoV-2 to infiltrate the cells. On the other hand, TMPRSS2 and CTSL
are proteases responsible for cleaving the spike protein on SARS-CoV-2 (Chua et al., 2020). The cleavage
of the spike protein is also a necessity for viral entry into host cells. These highlight the importance of gene
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expression levels and certain changes can provide insight into the severity of the disease and the impact of
smoking on the immune response to the virus.

2 Methods

To establish a baseline model, DummyClassifier from the Scikit-learn library with a ”most frequent” strat-
egy was used to predict the mode of the classes. This approach predicts the class label, in this case, the
smoker status that has the most samples in the training set. We then calculated the accuracy of this model
to be used as a reference for comparison.

To obtain a preliminary visualization of the data, the existing UMAP data provided by the authors was
plotted, grouping by cell types, as well as smoking conditions.

Topic modelling was then performed to identify co-expressed gene pathways between samples using non-
negative matrix factorization (NMF) from the Scikit-learn library. For hyperparameter tuning, the number
of topics k was chosen based on the reconstruction error for various k values. The mean squared error (MSE)
metric from Scikit-learn’s mean squared error function was used and an elbow curve was plotted using the
matplotlib.pyplot library (Fig. A2). The ”elbow method” was used to determine the optimal value of k,
which was found to be 8.

The Wilcoxon rank sum test from the scipy.stats library was used to investigate significant differences
between smokers and non-smokers for each topic identified from the NMF analysis. The rank sums function
was used to calculate the test statistic and p-value for each pair of topics at a significance level of 0.05. A
pair of bar graphs using matplotlib.pyplot were then plotted to visually compare the mean weights for each
of the 8 topics between smoker and non-smoker classes.

Next, a logistic regression model was fitted to the balanced data set using Scikit-learn’s
LogistcRegression method. LogisticRegression was first fitted on the whole data set, then on each cell
category. Using cross-validation and L2 regularization, hyperparameters were optimized on each of the mod-
els generated according to cell categories. The best three models were found and the f1 score, coefficients for
features, and intercept were obtained. Unfortunately, Scikit-learn did not provide a method for obtaining
the statistics. To obtain the statistics, the package statsmodel was utilized. Using statsmodel, a binomial
generalized linear model was fitted on the top 3 models to check the significance of the coefficients.

To explore how a general machine learning model could fit the data and possibly capture non-
monotonic trends, three different random forest based models were fitted to the balanced data using
RandomForestClassifier from Scikit-learn. Each model used five-fold cross-validation to decide the best
maximum depth for its random trees (Fig. A3). The number of random trees for each model was set to be
as many as was runnable in a reasonable time. The three models were: 1. A single random forest trained
with 100 trees on all training data 2. An ensemble of random forests (10 trees each) where each forest is
trained on data under a particular cell type annotation given by Muus et al. (2020) (cell-type based random
forest ensemble). Cross-validation was run to select max depth for each forest separately. Each prediction
used one forest for the cell’s type. 3. An ensemble of random forests for each NMF topic (topic based ran-
dom forest ensemble). Each random forest had 20 trees. Each forest was trained on a random sample of
examples where the selection probability of each example was weighted by its topic proportion for that for-
est topic. After using L1 normalization to make the topic proportions of each example sum to 1, prediction
happened by taking the weighted average of predictions of all models, weighted by the topic proportions.
Again, cross-validation selected the max-depth for each forest separately.

Feature importances were calculated for each random forest in all three random forest based models
using the mean decrease in Gini impurity.

3 Results

The baseline Dummy Classifier achieved an accuracy of 0.498. The UMAP data showed a total of 17 clusters.
When splitting between the conditions, it can be observed these clusters are co-localized between the cells
except for the epithelial AT2 cells (Fig. 1).

When performing NMF, eight topics representing sets of genes that are possibly co-expressed and
involved in similar pathways were identified (Table 1). Using the Wilcoxon Rank Sum test, pairwise com-
parisons of each topic between the two groups (smokers versus non-smokers) revealed a significant difference
(p ≤ 0.05) for each topic (Fig. 2.1). When examining the H matrix, we identified the top three genes that
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Fig. 1 Co-localization of cells can be observed except for that of epithelial AT2 cells. 1. The UMAP data of smoker and
non-smoker cells grouped by cell type (left). 2. The UMAP data of smokers and non-smokers grouped by smoking status (right).

contributed the most weight to each topic (Fig. 2.2). Notably, the gene IL6ST was present in multiple top-
ics (#2, #4, #5 and #6). CTSB was identified in both topics #4 and #8. C3, CTSC, C1R, CTSL, IL6 are
the genes that contribute the most weight to topics #1, #2, #3, #4 and #5 respectively.

Table 1 Topic results from topic modelling using NMF

Topic Genes Topic Genes

#1 C3, CFI, C2, CTSE, TMPRSS2, MBP, PCSK7 #5 IL6, IL6ST, PCSK5, CFI, PCSK7, FURIN, C3
#2 CTSC, IL6ST, PCSK7, PCSK5, PCSK1, C3, ACE2 #6 IL6ST, C2, PCSK7, TMPRSS2, MBP, CFI, FURIN
#3 C1R, IL6ST, PCSK5, CFI, C3, CTSB, PCSK1 #7 CTSS, C2, TMPRSS2, MBP, IL6R, PCSK5, FURIN
#4 CTSL, CTSB, IL6ST, C3, PCSK1, CTSS, MAG #8 CTSB, MBP, PCSK7, FURIN, IL6R, PCSK5, MYRF

Fig. 2 1. Mean weights of topics 1-8 between smokers and non-smokers. Asterisks(*) show significant differences (left) 2. Top
3 genes that contribute the most weight to each topic (right).

For the logistic regression model, the top three models grouped by cell types are epithelial AT2 cells,
stromal fibroblasts, and stromal pericytes, which has testing scores of 0.7656, 0.7240, and 0.6635, respectively
(Table 2). The top three coefficients for epithelial AT2 cells model are CTSC, CTSB, C1R (Table 2). The
top three coefficients for the stromal fibroblasts model are CTSL, CTSC, C1R (Table 2). Lastly, the stromal
pericytes model has CTSC, PCSK7, and CTSL as its top three coefficients (Table 2). All coefficients have
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been validated with statsmodel, and all are significant to α = 0.05 (Fig. A4). Note the intercepts are not
significant (Fig. A4).

Table 2 Testing score, intercepts, and top three coefficients of top three logistic regression model from sklearn

Model Test % Intercept Coefficients

Epithelial (AT2) 76.48 -0.5907 -1.6304 (CTSC) -1.1883 (CSTB) -0.5009 (C1R)
Stromal (Fibroblast) 72.51 -1.0492 -2.2451 (CTSL) -2.1979 (CTSC) 0.6803 (C1R)
Stromal (Pericyte) 66.35 -0.6252 -2.9893 (CTSC) -1.004 (CTSL) 0.9539 (PCSK7)

The three random forest models performed worse than the best logistic regression model on the dataset
as a whole (68.87%, 66.08%, and 59.53% test accuracy versus 76.56% respectively). The cell type based
random forest ensemble had the best test accuracy (68.87%). It was only marginally more accurate than
the single random forest (66.08%), and much more accurate than the topic based random forest ensemble
(59.53%). Interestingly, the random tree for AT2 cells in the cell type based random forest ensemble had
92.9% accuracy on its testing subset and outperformed the AT2 cell type logistic regression model having
76.48% accuracy.

Table 3 Accuracies of Machine learning models to predict smoker or non-smoker status of cells from lung scRNA-seq data

Model Test % Train % Hyper-parameters

logistic regression with discrete cell types 76.56 76.86 C = 1
single random forest 66.08 78.24 max depth= 32, n estimators= 100
random forest with discrete cell types 68.87 85.06 max depth1= 20− 40, n estimators= 10(each)
random forest with topic modeling 59.53 74.05 max depth1= 30− 40, n estimators= 20(each), k = 8

1Separate cross-validation for each random forest lead to a separate max depth for each forest, hence there is a range of depths

Fig. 3 Feature importances calculated by the mean decrease in Gini impurity for random forests in three forest based models
predicting whether cells are from smokers or non-smokers based on gene expression: 1. A single random forest trained with
100 trees on all training data 2. A cell type based random forest ensemble with 10 trees for each forest 3. A NMF topic based
random forest ensemble with 20 trees for each forest

Examining feature importances from the single random forest shows 4/5 of the proteins from the cathep-
sin family of proteases are the most important in making predictions (Fig. 4.1), namely CTSS, CTSL, CTSB,
and CTSC, but not CTSE. The next highest importance come from 3/4 complement proteins, namely C1R,
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C2, C3, but not C5. IL6ST and PCSK7 are next. The random tree for AT2 cells in the cell type based ran-
dom forest ensemble had high feature importances for many complement proteins (C1R, C3) and cathepsin
proteases (CTSS, CTSB) as well (Fig. 4.2).

4 Discussion

From the UMAP’s perspective, it is interesting to observe that most cells exhibit a high degree of co-
localization except for the epithelial AT2 cells and how this is aligning with our highest accuracy models.
Interestingly, other articles have reported that AT2 cells are important in lung repair and immune response
(Olajuyin, Zhang, & Ji, 2019).

From the results, we showed that our NMF-based topic modelling approach can identify distinct sets
of genes that are potentially involved in specific biological pathways related to smoking. The significant
differences (p < 0.05) between smokers and non-smokers suggest that smoking may have a differential effect
on the expression of genes involved in these specific pathways. Smoking has been linked to increased levels
of pro-inflammatory cytokines like IL-6. It is possible that smoking-induced changes in the immune system
could lead to a downregulation of these particular pathways, resulting in lower mean weights for these topics
among smokers (Chen, Cowan, Hasday, Vogel, & Medvedev, 2007). Moreover, smoking can cause changes
in DNA methylation that increase the risk of developing lung cancer. The specific changes observed in
DNA methylation were found to be linked to the C3 protein, highlighting the potential impact of smoking-
induced changes on health. (Zeilinger et al., 2013). Taken together, our findings may provide insights into
potential mechanisms for the observed differences in mean topic weights between smokers and non-smokers,
suggesting that DNA methylation may be a crucial molecular mechanism underlying the effects of smoking
on immune function and inflammation.

When examining the top three gene contributions for each topic, it is interesting to note that IL6ST was
present in multiple topics, indicating its potential involvement in multiple pathways affected the pathogenesis
of SARS-CoV-2. IL6ST is a receptor for the cytokine interleukin-6 (IL-6), which is a key mediator of the
inflammatory response. Del Valle et al. (2020) have shown that IL-6 is a strong predictor for patient survival
at time of hospitalization. IL-6’s role in patient survival may be due its involvement in the pathogenesis of
cytokine storm. Cytokine storm is a sudden, heightened immune response that can lead to tissue damage,
organ failure, and death (Del Valle et al., 2020).

Additionally, the gene CTSB was identified in both topics 4 and 8 suggesting a significant contribution
across the topics. Previous findings have shown that CTSB is highly expressed in lung adenocarcinoma after
SARS-CoV-2 infection and is also positively associated with proinflammatory protein expression (Ding et
al., 2022). These findings suggest CTSB may play an important role in the hyper-inflammatory response of
COVID-19 patients. Furthermore, C1R is involved in the activation of the C1 complex which is responsible
for identifying and binding to foreign invaders, such as viruses, and triggering a cascade of biological path-
ways that ultimately leads to their destruction (Uhlen et al., 2010). Survival analysis findings have revealed
a significant correlation between high expression of C1R and pathways involved in COVID-19 (Wang et
al., 2022). It is important to note that topic modelling is an unsupervised machine learning model, and as
such, it cannot establish causal relationships between variables. While the NMF-based approach has iden-
tified distinct sets of genes potentially involved in specific biological pathways affected by smoking, further
research is required to establish causality and underlying mechanisms. Nonetheless, the findings provide
valuable insights and hypotheses for future investigation into the effects of smoking on gene expression and
immune function.

In the logistic regression and random forest based models, there were a few genes repeatedly observed to
be of importance in the top models. These genes were not limited to, but included CTSC, CTSL, and C1R.
Indeed, aligning with the literature, CTSC has been found to be a cause of immune-related diseases such as
cancer and Papillon-Lefèvre syndrome (Korkmaz et al., 2018). Some even suggested CTSC inhibition may
be a therapeutic target for cancer (Korkmaz et al., 2021). It is also not surprising that CTSL has similar
functions. Previous research suggested that CTSL is upregulated in cancer and also a potential therapeutic
target (Sudhan & Siemann, 2015). As well, C1R is a gene that encodes a protein important for the regulation
of the innate immune system (Sim, 1981). From our perspective, it is interesting to observe that all the
genes correlated in prediction have immune function implications, which could potentially be caused by the
upregulation of the immune system due to smoking.

One interesting aspect to note is that the top three models of logistic regression did not include any
immune cells. While unsure why this may be the case, it is suspected that the acute heightened immune
response due to COVID infections may mask the predictability of immune cells on smoking behaviours.
On the other hand, the chronically elevated proliferation of epithelial cells of smoker’s lungs compared to
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non-smoker’s lungs remained a predictive factor (Thorley & Tetley, 2007). In contrast to logistic regression,
the cell type based random forest ensemble had the third highest accuracy (76.43%) of all cell types for
the lymphocyte immune subpopulation and the sixth highest accuracy for myeloid immune subpopulation
(69.11%). Hence, the random forest lymphocyte submodel competed with the most accurate submodel of
the logistic regression ensemble at 76.48% for the AT2 cell submodel on its subpopulation. It is possible
that there are non-monotonic trends present in the immune cell gene expression that are better predicted
by random forests since logistic regression can only model monotonic trends. Further experimentation using
smokers and non-smokers in a healthy population may be a potential avenue to confirm this hypothesis.
The logistic regression model has its limitation in that it only considers the data fitting a sigmoid curve.
Nevertheless, there could still be other avenues for future studies such as incorporating other features
provided with the data such as age.

5 Conclusion

After fitting various models, our results indicated that several immune regulatory genes (CTSB, CTSC,
CTSL) are predictive of smoking and non-smoking behaviours in COVID-19 patients. This result is surprising
in contrast with Muus et al’s result. As mentioned before, Muus et al. investigated ACE2, TMPRSS2, and
CTSL, yet only CTSL appeared aligned with our findings. Thus, it is suggested that the author of the
original paper should extend to potentially other gene expression analyses.
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Appendix A

The GitHub repository to the code: https://github.com/ptellier/covid-smoker-ml

Fig. A1 Spearman Correlation from scRNA-seq data of every gene pair in the 27 most differentially expressed genes as
selected by muus et al.

Fig. A2 NMF model performance gauged using the “elbow method” on the change in reconstruction error with number of
topics
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Fig. A3 Five-fold cross validation to decide the best maximum depth for random trees in the random forests of three models
predicting whether cells are from smokers or non-smokers based on gene expression: 1. A single random forest trained with
100 trees on all training data 2. A cell type based random forest ensemble with 10 trees for each forest 3. A NMF topic based
random forest ensemble with 20 trees for each forest

Fig. A4 Statsmodel binomial generalized linear model for the top 3 models reported by sklearn. 1. Left, the result for
epithelial AT2 cells, x27 denotes CTSC, x26 denotes CTSB, x19 denotes C1R. 2. Middle, the result for stromal fibroblast cells,
x25 denotes CTSL, x27 denotes CTSC, x19 denotes C1R. 3. Right, the result for stromal pericyte cells, x27 denotes CTSC,
x18 denotes PCSK7, x25 denotes CTSL.
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